

Bachelor of Computer Applications
(BCA)

SOFTWARE ENGINEERING LAB
 (DBCACO308P24)

Self-Learning Material
(SEM III)

Jaipur National University
Centre for Distance and Online Education

Established by Government of Rajasthan

Approved by UGC under Sec 2(f) of UGC ACT 1956
&

NAAC A+ Accredited

Jaipur National University Course Code: DBCACO308P24

Software Engineering

TABLE OF CONTENTS

Course Introduction i

Experiment 1

Requirements Specification Document for an Online Bookstore

01

Experiment 2

Use Case Diagram for a Public Library System

02

Experiment 3

Design a Class Diagram

02

Experiment 4

Software Testing Plan

03

Experiment 5

Agile Project Management Simulation

03

Experiment 6

Database Design for E-commerce Website

04

Experiment 7

Software Architecture Document

04

Experiment 8

User Interface Design

05

Experiment 9

Performance Optimization Plan

05

Experiment 10

System Integration Scenario

06

Experiment 11

Software Maintenance Plan

06

Experiment 12

Ethical Hacking Exercise

07

Experiment 13

Code Refactoring Exercise

07

Experiment 14

Disaster Recovery Plan

08

Experiment 15

Mobile Application Development

08

Experiment 16

Security Audit for a Web Application

 09

Experiment 17

Scalability Testing

09

Experiment 18

DevOps Pipeline Setup

10

Experiment 19

AI-Powered Feature Implementation

11

Experiment 20

Legacy System Modernization

11

EXPERT COMMITTEE

Prof. Sunil Gupta

(Computer and Systems Sciences, JNU Jaipur)

Dr. Satish Pandey

(Computer and Systems Sciences, JNU Jaipur)

Dr. Shalini Rajawat

(Computer and Systems Sciences, JNU Jaipur)

COURSE COORDINATOR

Mr. Pawan Jakhar

(Computer and Systems Sciences, JNU Jaipur)

UNIT PREPARATION

Unit Writer(s) Assisting &

Proofreading
Unit Editor

Mr. Shish Dubey

(Computer and Systems

Sciences, JNU Jaipur)

Mr. Ram Lal Yadav

(Computer and Systems

Sciences, JNU Jaipur)

Dr. Deepak

Shekhawat

(Computer and Systems

Sciences, JNU Jaipur)

Secretarial Assistance

Mr. Mukesh Sharma

COURSE INTRODUCTION

This course on Software Engineering offers a comprehensive exploration of software development

processes, methodologies, and management techniques. It is structured to provide students with a

robust understanding of the paradigms and life cycle models critical to software development,

including waterfall, incremental, spiral, evolutionary, prototyping, and object-oriented models. These

foundational concepts establish the framework for studying the various phases of software

development, from conception through to testing and maintenance.

The curriculum delves into the specifics of software requirements, emphasizing both functional and

non-functional aspects. Students will engage with the requirement engineering process, learning about

feasibility studies, requirement validation and management, as well as various prototyping techniques

including rapid and user interface prototyping. Additionally, the course covers software document

analysis and modeling, which includes data, functional, and behavioral models, structured analysis,

and the creation of data dictionaries.

In terms of design, the course introduces key concepts and principles of software design, focusing on

modular design, design heuristics, and architectural considerations. Students will explore different

design models, architectural and data design, and specific strategies for real-time software design,

including data acquisition systems.

The course also addresses critical aspects of Software Configuration Management (SCM) and

Software Project Management, providing insights into version and change control, configuration

audits, and SCM standards. It emphasizes the importance of measurement and estimations in

managing software projects, including empirical estimation models and project scheduling techniques.

Testing methodologies form another core component of the curriculum, with an in-depth look at

various testing levels, activities, types, and strategies, including black-box, structural, and regression

testing. The course culminates with a discussion on contemporary trends in Software Engineering,

such as reverse engineering and re-engineering, and the practical application of CASE tools through

case studies.

Overall, this course equips students with the necessary skills and knowledge to effectively manage

and execute software projects, ensuring they are well-prepared for careers in software development

and engineering.

Course Outcomes:

At the completion of the course, a student will be able to:

1. Compare between traditional ad-hoc methods and SDLC based approach of

software development.

2. Understand different theories, models, and techniques related to SDLC.

3. Apply the software engineering lifecycle for different projects by

demonstrating competence in communication, planning, analysis, design,

construction, and deployment

4. An ability to work in one or more significant application domains. Work as

an individual and as part of a multidisciplinary team to develop and deliver

quality software.

5. Developing efficient software using the latest tools and techniques. Use of computer

aided designing and automated testing tools.

Acknowledgements:

The content we have utilized is solely educational in nature. The copyright proprietors of the materials

reproduced in this book have been tracked down as much as possible. The editors apologize for any

violation that may have happened, and they will be happy to rectify any such material in later versions of

this book.

i

1

Question 1: Requirements Specification Document for an Online Bookstore

Program Statement: Develop a comprehensive Requirements Specification Document for

an online bookstore. The system should allow users to create accounts, browse books by

category, add books to a shopping cart, and complete purchases. The system should also

provide administrative functionalities such as adding new books, managing inventory, and

viewing sales reports.

Detailed Requirements:

 User Account Management: Registration, login, password recovery, and user profile

management.

 Book Browsing: Ability to search for books by title, author, or ISBN, and filter

results by genre, price, and publication date.

 Shopping Cart: Users should be able to add items to the cart, modify quantities, and

remove items.

 Checkout Process: Integration with a payment gateway for processing credit card

transactions, and order confirmation via email.

 Administrative Functions: Secure login for administrators, functionalities to add or

remove books, update book details, and access to a dashboard that displays real-time

data on sales and inventory levels.

Solution Hints: Start by defining the scope of the system and identifying all stakeholders.

Use tools like user interviews and competitive analysis to gather requirements. Document the

functional requirements clearly with use cases or user stories. For non-functional

requirements, consider aspects like scalability, security (e.g., use of HTTPS, data encryption),

and compliance with data protection regulations. Use diagrams where applicable, such as

entity-relationship diagrams for database design and sequence diagrams to illustrate

processes.

2

Question 2: Use Case Diagram for a Public Library System

Program Statement: Design a use case diagram that captures the interactions between

librarians, members, and the library system. The system should support book lending, book

returns, member registration, and fine payment.

Detailed Requirements:

 Member Registration: Capture member details and issue library cards.

 Book Lending: Check out books to members, including due date assignment and

availability checks.

 Book Returns: Handle the return of borrowed books, including condition checks and

fine calculations for late returns.

 Fine Payment: Allow members to pay fines for late returns or damaged books.

 System Maintenance: Regular updates to the book catalog, managing member

records, and generating reports on book loans and returns.

Solution Hints: Begin with identifying the primary actors (members, librarians) and

secondary actors (online payment systems, email systems for notifications). Define the main

interactions these actors have with the system. For each use case, write a brief description

that includes the main success scenario and any alternative flows. Consider the conditions

under which exceptions might occur and how the system should respond. Diagrammatically

represent these interactions in a use case diagram using UML notation. Focus on clarity and

completeness to ensure that all user interactions with the system are accurately represented.

Question 3: Design a Class Diagram

Program Statement: Create a class diagram for a ride-sharing application that includes user

management, ride booking, and payment processing.

Detailed Requirements:

 User Management: Users can be riders or drivers. Include attributes like name,

contact details, and user ratings.

3

 Ride Booking: Ability to request a ride, assign a driver, and calculate the fare based

on distance.

 Payment Processing: Support for multiple payment methods, including credit card

and mobile wallet.

Solution Hints: Identify the main classes and their relationships. Define methods and

attributes for each class that capture the essential functionalities. Consider using inheritance

where applicable, such as a base class for users from which riders and drivers can derive.

Question 4: Software Testing Plan

Program Statement: Develop a detailed testing plan for a new social media platform that

includes functional testing, integration testing, and usability testing.

Detailed Requirements:

 Functional Testing: Test individual features like posting updates, liking posts, and

adding friends.

 Integration Testing: Ensure that different modules (e.g., user interface, database)

work together as expected.

 Usability Testing: Evaluate the platform’s ease of use with target audience groups.

Solution Hints: Outline different testing phases and the techniques to be used. For each type

of testing, specify the scope, objectives, and methods. Prepare test cases that cover various

user scenarios and possible edge cases.

Question 5: Agile Project Management Simulation

Program Statement: Simulate an agile project management environment where students

must plan and execute a sprint for a hypothetical software project.

Detailed Requirements:

 Sprint Planning: Define sprint goals and tasks based on the product backlog.

4

 Daily Stand-ups: Organize daily meetings to track progress and address

impediments.

 Sprint Review: Conduct a meeting at the end of the sprint to demonstrate completed

work.

Solution Hints: Use agile methodologies like Scrum or Kanban. Emphasize the importance

of communication, flexibility, and continuous improvement. Encourage students to use tools

like JIRA or Trello for task management.

Question 6: Database Design for E-commerce Website

Program Statement: Design a database schema for an e-commerce website that handles

products, orders, customers, and shipping.

Detailed Requirements:

 Products: Include tables for product information, categories, and inventory levels.

 Orders: Design tables to handle order placement, order status, and payment history.

 Customers: Maintain customer profiles, including shipping addresses and order

history.

 Shipping: Include logistics information, such as shipping methods, costs, and

delivery status.

Solution Hints: Focus on creating a normalized database schema to avoid redundancy and

ensure data integrity. Use foreign keys to establish relationships between tables. Consider

aspects like scalability and security for handling sensitive information.

Question 7: Software Architecture Document

Program Statement: Create a software architecture document for a health monitoring

system that connects patients, doctors, and medical devices.

Detailed Requirements:

 System Overview: Describe the system’s structure and its main components.

5

 High-Level Components: Detail components such as user interfaces, databases, and

external integrations.

 Communication: Explain how components communicate, including any APIs or

protocols used.

Solution Hints: Use architectural views to describe different aspects of the system, such as

logical, development, and deployment views. Include diagrams to illustrate complex concepts

and interactions.

Question 8: User Interface Design

Program Statement: Design the user interface for a mobile app that allows users to book

fitness classes, track progress, and connect with personal trainers.

Detailed Requirements:

 Booking System: Easy navigation for class schedules and booking options.

 Progress Tracker: Visual representations of user progress, such as graphs and

statistics.

 Personal Trainer Connection: Features to message trainers, view trainer profiles,

and schedule sessions.

Solution Hints: Focus on usability and aesthetic appeal. Use tools like Adobe XD or Sketch

for prototyping. Consider user feedback to refine the design, ensuring it’s intuitive and

engaging.

Question 9: Performance Optimization Plan

Program Statement: Develop a plan to optimize the performance of a large-scale web

application focusing on load times and server response times.

Detailed Requirements:

 Frontend Optimization: Techniques such as minifying JavaScript and CSS,

optimizing images, and using asynchronous loading.

6

 Backend Optimization: Database indexing, query optimization, and efficient use of

caching.

 Monitoring: Tools and practices to monitor performance and identify bottlenecks.

Solution Hints: Establish performance benchmarks and identify key performance indicators

(KPIs). Use tools like Google Lighthouse or WebPageTest for frontend analysis and database

profiling tools for backend optimizations.

Question 10: System Integration Scenario

Program Statement: Outline a scenario where students must integrate an existing inventory

management system with a new online sales platform.

Detailed Requirements:

 API Usage: Define how the systems will communicate via APIs, including necessary

endpoints.

 Data Synchronization: Ensure consistent data across systems, handling conflicts and

duplicates.

 Error Handling: Develop strategies to manage errors and exceptions during

integration.

Solution Hints: Use middleware or an ESB (Enterprise Service Bus) for integration. Focus

on data flow diagrams and sequence diagrams to visualize the integration process. Consider

security aspects, particularly in API authentication and authorization.

Question 11: Software Maintenance Plan

Program Statement: Prepare a maintenance plan for a legacy software system that needs

updating and optimization to meet current technological standards.

Detailed Requirements:

 Assessment: Conduct a thorough assessment of the current system to identify areas

for improvement.

7

 Update Strategy: Plan for gradual updates without disrupting the existing user base.

 Documentation: Update all documentation to reflect changes and provide training for

users on new features.

Solution Hints: Prioritize updates based on urgency and impact. Use version control systems

to manage changes and test updates in a staging environment before deployment.

Question 12: Ethical Hacking Exercise

Program Statement: Conduct an ethical hacking exercise to identify vulnerabilities in a

simulated corporate network.

Detailed Requirements:

 Vulnerability Scanning: Use tools like Nmap or Nessus to scan the network for

vulnerabilities.

 Penetration Testing: Attempt to exploit identified vulnerabilities to assess the

impact.

 Report and Fix: Prepare a detailed report of findings and suggest measures to

mitigate risks.

Solution Hints: Focus on common vulnerabilities like SQL injection, XSS, and buffer

overflows. Use a systematic approach to document each test and its outcomes. Ensure that all

testing is authorized and within ethical boundaries.

Question 13: Code Refactoring Exercise

Program Statement: Refractor a given piece of poorly written software code to improve

readability, maintainability, and performance.

Detailed Requirements:

 Identify Issues:Analyze the code to identify bad practices such as code duplication,

long methods, and magic numbers.

8

 Refactoring Techniques: Apply techniques like extracting methods, renaming

variables, and reducing dependencies.

 Testing: Ensure the refactored code passes all existing tests and behaves as expected.

Solution Hints: Use code analysis tools to help identify problem areas. Maintain a test-

driven approach to ensure that changes do not affect the functionality. Document changes for

future reference.

Question 14: Disaster Recovery Plan

Program Statement: Develop a comprehensive disaster recovery plan for an IT

infrastructure that supports critical business operations.

Detailed Requirements:

 Risk Assessment: Identify potential threats and vulnerabilities that could impact

business continuity.

 Recovery Strategies: Outline strategies for data backup, system recovery, and

alternative work arrangements.

 Plan Testing: Describe the procedures for testing the plan to ensure its effectiveness.

Solution Hints: Include details on recovery point objectives (RPO) and recovery time

objectives (RTO). Use scenarios to illustrate how the plan would be executed in different

types of disasters. Regularly update the plan to incorporate new technologies and changes in

the business environment.

Question 15: Mobile Application Development

Program Statement: Develop a plan for creating a mobile application that assists users with

public transportation, including schedules, ticket booking, and real-time updates.

Detailed Requirements:

 User Interface: Design an intuitive interface that provides easy access to all

functionalities.

9

 Functionality: Include features for viewing schedules, booking tickets, and receiving

notifications about delays or changes.

 Integration: Ensure the app integrates with existing transportation APIs for real-time

data.

Solution Hints: Use mobile development frameworks like React Native for cross-platform

compatibility. Focus on user experience design to ensure the app is accessible and easy to

use. Test extensively on different devices to ensure functionality and performance.

Question 16: Security Audit for a Web Application

Program Statement: Conduct a security audit on a web application to identify security

threats and vulnerabilities. Propose mitigation strategies for each identified issue.

Detailed Requirements:

 Threat Identification: Scan the application for common vulnerabilities such as SQL

injection, CSRF, and XSS.

 Security Assessment: Evaluate authentication, authorization, and encryption

mechanisms.

 Mitigation Strategies: Develop detailed plans to address and mitigate each

vulnerability.

Solution Hints: Use automated security scanning tools to identify vulnerabilities and manual

testing to confirm and explore these issues further. Discuss the principles of secure coding

practices and the importance of regular security updates and patches. For each vulnerability,

provide a theoretical mitigation strategy that could include both code fixes and changes to

deployment environments.

Question 17: Scalability Testing

Program Statement: Plan and execute scalability testing for a high-traffic e-commerce site

to ensure it can handle increased loads, particularly during peak shopping periods.

Detailed Requirements:

10

 Load Testing: Simulate varying loads on the server to measure response times and

system behavior under stress.

 Scalability Strategies: Evaluate and propose scaling strategies, such as horizontal

scaling, vertical scaling, and the use of load balancers.

 Performance Metrics: Define and measure key performance indicators such as page

load times, transaction completion rate, and system downtime.

Solution Hints: Use tools like JMeter or LoadRunner for load testing. Discuss the concept of

cloud scalability with services like AWS Elastic Load Balancing or Google Cloud Load

Balancing. Analyze the results to recommend infrastructure adjustments and software

optimizations that help manage larger user volumes efficiently.

Question 18: DevOps Pipeline Setup

Program Statement: Design and set up a DevOps pipeline for continuous integration and

continuous deployment (CI/CD) for a multi-service application.

Detailed Requirements:

 Tool Selection: Choose appropriate tools for version control, build automation,

testing, and deployment.

 Pipeline Configuration: Configure the pipeline stages, including code checkout,

build, test automation, and deployment.

 Monitoring and Feedback: Integrate monitoring tools and set up feedback

mechanisms for ongoing improvement.

Solution Hints: Focus on integrating tools like Git for version control, Jenkins for CI/CD,

Selenium for automated testing, and Docker for containerization. Highlight the importance of

feedback loops using monitoring tools such as Prometheus or Grafana for system metrics.

Discuss best practices in CI/CD to minimize deployment risks and improve release quality.

11

Question 19: AI-Powered Feature Implementation

Program Statement: Implement an AI-powered feature in an existing application, such as a

recommendation system for a shopping site or a chatbot for customer service.

Detailed Requirements:

 AI Model Choice: Choose and justify an appropriate AI model based on the feature’s

requirements.

 Integration Approach: Detail the steps for integrating the AI model into the existing

system architecture.

 Testing and Evaluation: Outline methods for testing the AI feature and evaluating its

performance against predefined metrics.

Solution Hints: Discuss different machine learning models like neural networks for a

recommendation system or NLP models for a chatbot. Use APIs like TensorFlow or PyTorch

for model development and integration. Focus on the importance of data quality, model

training, and fine-tuning. Include validation techniques to measure the effectiveness of the AI

feature in real-world scenarios.

Question 20: Legacy System Modernization

Program Statement: Develop a detailed plan for modernizing a legacy banking system to

improve performance, security, and user experience.

Detailed Requirements:

 System Assessment: Analyze the current system to identify bottlenecks, security

flaws, and areas needing UX improvement.

 Modernization Strategy: Choose between re-platforming, refactoring, or replacing

components of the system.

 Implementation Roadmap: Create a phased roadmap for the modernization process,

including risk assessment and mitigation.

Solution Hints: Evaluate the benefits and drawbacks of different modernization strategies,

considering factors such as cost, time, and impact on current operations. Discuss the use of

12

modern technologies like microservices architecture, cloud computing, and API-first design.

Plan for thorough testing phases to ensure the new system meets all functional and non-

functional requirements without disrupting existing services.

	8bae1556b88fdfe2b95fab429ee5570ab8c2fe5e5118c57cdca5483058e993fc.pdf
	7954c2e8425b616bedb52c19757ad9e25c9fb04edb572eeb54d8998a17f5bb4e.pdf
	8bae1556b88fdfe2b95fab429ee5570ab8c2fe5e5118c57cdca5483058e993fc.pdf

